同濟復(fù)旦一聯(lián)合科研成果入選“2022中國光學(xué)十大進展”

來源:文匯報

昨晚(4月20日),“2022中國光學(xué)十大進展”發(fā)布。同濟大學(xué)物理科學(xué)與工程學(xué)院王占山和程鑫彬團隊聯(lián)合復(fù)旦大學(xué)物理學(xué)系周磊團隊的科研成果“光頻完美異常反射器”,入選“2022中國光學(xué)十大進展”(應(yīng)用研究類)。

研究團隊提出了一維多層膜結(jié)合二維超表面的準三維亞波長新結(jié)構(gòu),通過傳輸波和布洛赫波的高效耦合增強非局域能流調(diào)控能力,首次實現(xiàn)了效率優(yōu)于99%的光頻異常反射。該成果以“Perfect anomalous reflectors at optical frequencies”為題發(fā)表于期刊Science Advances。


(相關(guān)資料圖)

左圖:準三維亞波長結(jié)構(gòu)右圖:完美異常反射原理

將光反射到預(yù)定的非鏡面反射方向是超表面的一項重要能力,也是許多實際應(yīng)用的基礎(chǔ),如超透鏡、光譜儀、激光雷達等。受限于非局域調(diào)控能力不足,光學(xué)超表面的異常反射效率低于80%,難以滿足激光領(lǐng)域效率優(yōu)于99%的需求,亟待突破異常偏折效率的科學(xué)認識,創(chuàng)新調(diào)控方法,獲得光頻完美異常偏折器件。

鑒于此,研究團隊從完美異常反射的物理要求出發(fā),首先闡明了完美異常反射所需要的能流分布形式,提出了一維多層膜結(jié)合二維超表面的準三維亞波長新結(jié)構(gòu)(如上圖左圖),通過準三維結(jié)構(gòu)內(nèi)傳輸波和布洛赫波的高效耦合(如上圖右圖),增強了多重散射并提高了非局域能流調(diào)控能力,在1550納米實現(xiàn)了國際上效率最高的、效率優(yōu)于99%的光頻異常反射。

該工作以光學(xué)超表面實用化的需求為導(dǎo)向,解決了“效率低”這個限制其走向應(yīng)用的“卡脖子”問題,研究成果有望推動新型波束掃描系統(tǒng)等儀器裝備的發(fā)展。

記者了解到,該成果的第一完成人何濤博士現(xiàn)為同濟大學(xué)物理科學(xué)與工程學(xué)院博士后研究人員,其本科就讀于同濟大學(xué)物理科學(xué)與工程學(xué)院光信息科學(xué)與工程專業(yè),畢業(yè)后保送至同濟大學(xué)光學(xué)專業(yè)繼續(xù)攻讀博士學(xué)位。何濤在本碩博期間,持續(xù)開展光頻完美異常反射器的基礎(chǔ)理論研究和關(guān)鍵技術(shù)創(chuàng)新,成為該校自主培養(yǎng)的優(yōu)秀青年科研人才。

相關(guān)鏈接

入選成果如下:

基礎(chǔ)研究類(10項)

1.微腔光梳驅(qū)動的新型硅基光電子片上集成系統(tǒng)

北京大學(xué)電子學(xué)院教授王興軍團隊聯(lián)合加州大學(xué)圣塔巴巴拉分校材料、電氣與計算機工程系教授約翰·E·鮑爾斯(John E.Bowers)團隊合作,攻關(guān)解決微腔光梳簡易魯棒激發(fā)與長時間穩(wěn)定、面向光梳光源的硅基系統(tǒng)設(shè)計、硅基片上可重構(gòu)多維光譜整形技術(shù)等難題,在國際上首次實現(xiàn)了由克爾微腔光梳驅(qū)動的新型硅基光電子片上系統(tǒng),有望直接應(yīng)用于數(shù)據(jù)中心、5/6G信號處理、自動駕駛、光計算等領(lǐng)域,為下一代片上光電子信息系統(tǒng)提供了全新的研究范式和發(fā)展方向。

2.光學(xué)渦環(huán)的誕生

上海理工大學(xué)光電信息與計算機工程學(xué)院教授詹其文帶領(lǐng)的納米光子學(xué)團隊基于麥克斯韋方程組和光學(xué)保角變換,首次在理論上完整推導(dǎo)并在實驗上實現(xiàn)了優(yōu)美的光學(xué)渦環(huán)結(jié)構(gòu)。該研究工作為三維復(fù)雜時空光場的生成和表征提供了嶄新的思路,對環(huán)狀對稱電動力學(xué)、環(huán)狀對稱等離子物理、光學(xué)對稱和拓撲、量子物理、天體物理等理論研究,以及光學(xué)傳感、光操縱、光信息與能量傳遞等應(yīng)用研究都將具有重要且深遠的意義。

3.用光3D打印納米晶體

清華大學(xué)精密儀器系孫洪波教授、林琳涵副教授課題組首次提出了利用光生高能載流子調(diào)控納米材料的表面化學(xué)活性并實現(xiàn)化學(xué)鍵合,由此實現(xiàn)了半導(dǎo)體量子點等功能納米粒子的三維激光裝配。這一技術(shù)具備真三維、高純度、高分辨率、異質(zhì)異構(gòu)集成的技術(shù)優(yōu)勢,開辟了功能納米器件制備工藝的新途徑,在片上光電器件集成、高性能近眼顯示等領(lǐng)域具有廣泛的應(yīng)用前景。

4.新技術(shù)首次實現(xiàn)激光3D打印納米鐵電疇

南京大學(xué)現(xiàn)代工程與應(yīng)用科學(xué)學(xué)院教授張勇領(lǐng)銜的研究團隊發(fā)展了一種非互易激光極化鐵電疇技術(shù):將飛秒脈沖激光聚焦于鈮酸鋰晶體中,在晶體內(nèi)部形成了一個有效電場,實現(xiàn)了三維納米鐵電疇的可控制備。加工精度達到了30納米,遠遠突破衍射極限,且可以實現(xiàn)鐵電疇結(jié)構(gòu)的修正與重構(gòu)。這一技術(shù)解決了傳統(tǒng)極化工藝僅限于在二維平面內(nèi)以微米精度加工鐵電疇結(jié)構(gòu)的難題,為三維集成光電器件的發(fā)展提供了新的技術(shù)支撐。

5.高純度超集成手性光源領(lǐng)域取得重要研究進展

哈爾濱工業(yè)大學(xué)(深圳)宋清海教授團隊基于連續(xù)域中束縛態(tài)自身的物理特性,實現(xiàn)了高純度、高Q值與高方向性的手性熒光到激光的出射。在無需自旋注入的情況下,即可實現(xiàn)控制自發(fā)輻射和激光的光譜、遠場以及自旋角動量。這種方法對改善當(dāng)前手性光源的設(shè)計,并促進其在光子系統(tǒng)與量子系統(tǒng)中的應(yīng)用具有重要意義。

6.羲和激光首輪實驗獲得60MeV質(zhì)子束

中國科學(xué)院上海光學(xué)精密機械研究所強場激光物理國家重點實驗室張輝副研究員領(lǐng)銜的研究團隊依托于上海超強超短激光實驗裝置(羲和激光,SULF) ,在首輪磨合實驗中利用SULF-10PW激光轟擊微米金屬靶,在靶后法線鞘層加速機制下獲得了截止能量達62.5MeV的質(zhì)子束,該結(jié)果達到國內(nèi)領(lǐng)先水平,進入國際前列。未來將通過進一步優(yōu)化,獲得百MeV級的高能質(zhì)子束,切實推動激光質(zhì)子源在聚變能源、腫瘤治療等重要領(lǐng)域的應(yīng)用。

7.高效、高重頻極紫外超快相干光源

上海交通大學(xué)物理與天文學(xué)院劉峰副研究員、陳民教授、李博原副研究員課題組通過引入圓偏振預(yù)脈沖,成功實現(xiàn)對微米尺度預(yù)等離子體的主動調(diào)控,構(gòu)建出合適的縱向密度分布,解決了高次諧波產(chǎn)生受限于激光對比度的難題,實驗驗證了產(chǎn)生高重頻、高亮度極紫外超快輻射源的新方案。

8.稀土離子f-f躍遷發(fā)光壽命被壓縮至納秒級

陜西師范大學(xué)物理學(xué)與信息技術(shù)學(xué)院張正龍教授、鄭海榮教授團隊,依托自主搭建的高分辨原位光譜系統(tǒng),在納米光學(xué)領(lǐng)域取得了突破性進展。利用等離激元傾斜納米光腔,將稀土離子f-f 躍遷發(fā)光壽命壓縮至50 納秒以下,同時獲得1000余倍的量子產(chǎn)率增強。該成果被審稿人評價為稀土發(fā)光領(lǐng)域“里程碑”式的工作,對拓展稀土發(fā)光應(yīng)用優(yōu)勢,推動量子通訊單光子源、納米激光器的發(fā)展具有重要意義。

9.激光干涉儀的量子超越

上海交通大學(xué)物理與天文學(xué)院及李政道研究所張衛(wèi)平教授團隊與合作者,利用其發(fā)展的量子關(guān)聯(lián)干涉技術(shù)與激光干涉儀巧妙結(jié)合,實現(xiàn)了一種超越傳統(tǒng)激光干涉儀的新型量子精密測量技術(shù)。新方法融合經(jīng)典-量子優(yōu)勢于一體,原理上可以拓展到LIGO引力波探測器等大型精密測量儀器中,實現(xiàn)對傳統(tǒng)干涉技術(shù)的升級,向開拓真正有應(yīng)用價值的量子技術(shù)邁出了重要的一步。

10.突破熒光范圍的激光輻射

山東大學(xué)物理學(xué)院于浩海教授、張懷金教授團隊和南京大學(xué)現(xiàn)代工程與應(yīng)用科學(xué)學(xué)院陳延峰教授團隊協(xié)同攻關(guān),在激光物理領(lǐng)域取得突破,首次實現(xiàn)基于多聲子耦合的激光輻射,在遠超熒光光譜的范圍獲得了寬波段、可調(diào)諧激光輸出。研究成果拓寬了激光增益范圍,闡明了激光晶體中的關(guān)鍵功能基元和序構(gòu)關(guān)系,對于固體激光技術(shù)的發(fā)展具有重要意義。

應(yīng)用研究類(10項)

1.集成化成像芯片實現(xiàn)像差矯正三維攝影

清華大學(xué)電子工程系副教授方璐和中國工程院院士、清華大學(xué)教授戴瓊海團隊提出了非相干光下的數(shù)字自適應(yīng)光學(xué)新架構(gòu),解耦信號采集與像差矯正,首次實現(xiàn)了高速大范圍分塊像差去除。研制了集成化的元成像芯片,能夠?qū)崿F(xiàn)像差矯正的大視場高分辨率高速三維成像,將傳統(tǒng)自適應(yīng)光學(xué)的有效視場直徑從40角秒提升至了1000角秒,可廣泛用于天文觀測、工業(yè)檢測、醫(yī)療診斷等領(lǐng)域。

2.時空域精細操控半導(dǎo)體納米晶能帶結(jié)構(gòu)

浙江大學(xué)光電科學(xué)與工程學(xué)院邱建榮教授團隊與之江實驗室光電智能計算研究中心研究專家譚德志團隊合作,揭示了飛秒激光誘導(dǎo)空間選擇性介觀尺度分相和離子交換新規(guī)律,實現(xiàn)了對玻璃微區(qū)元素分布的精細調(diào)控,開拓了飛秒激光三維極端制造新技術(shù),構(gòu)筑了三維發(fā)光寬波段連續(xù)可調(diào)諧納米晶結(jié)構(gòu),首次提出并展示這種三維微納結(jié)構(gòu)在超大容量超長壽命信息存儲、高穩(wěn)定Micro-LED列陣和動態(tài)立體彩色全息顯示等的前沿應(yīng)用。

3.基于超構(gòu)透鏡集成的平面廣角相機

南京大學(xué)現(xiàn)代工程與應(yīng)用科學(xué)學(xué)院教授李濤團隊研發(fā)出一種基于超構(gòu)透鏡陣列的平面廣角相機,僅用一微米厚的納米結(jié)構(gòu)就實現(xiàn)了超過120°視角高質(zhì)量的廣角成像功能。這一全新原理的設(shè)計原理成功突破傳統(tǒng)商用魚眼鏡頭在體積和重量上限制,展示了超構(gòu)透鏡設(shè)計在顛覆性成像技術(shù)中巨大的應(yīng)用潛力。

4.光電集成輕微型“復(fù)眼相機”,解決商用探測器不兼容問題

吉林大學(xué)電子科學(xué)與工程學(xué)院教授張永來領(lǐng)銜的合作團隊通過飛秒激光微加工技術(shù),制造具有對數(shù)輪廓小眼的三維仿生復(fù)眼,突破了三維復(fù)眼非平面成像和商用微型CCD/CMOS探測器失配難題。研制了質(zhì)量僅為230mg的光電集成微型復(fù)眼相機,借助多目視覺原理和神經(jīng)網(wǎng)絡(luò)重構(gòu)算法,實現(xiàn)了對微觀目標(biāo)運動軌跡的三維重構(gòu)。該成果在醫(yī)療內(nèi)窺成像和微型機器人視覺等前沿領(lǐng)域具有重要意義。

5.光纖量子密鑰分發(fā)新紀錄——無中繼安全傳輸超830公里

中國科學(xué)技術(shù)大學(xué)光學(xué)與光學(xué)工程系教授、中國科學(xué)院院士郭光燦和中國科學(xué)技術(shù)大學(xué)光學(xué)與光學(xué)工程系教授韓正甫團隊通過解決極弱光雙場制備和低噪聲快速相位補償難題,突破信噪比限制,創(chuàng)造830公里無中繼光纖量子通信世界紀錄。相比于國內(nèi)外其他團隊的工作,該成果不僅將無中繼傳輸距離提升了200多公里,而且將成碼率提升了50~1000倍,向?qū)崿F(xiàn)千公里陸基量子通信邁出了重要一步。

6.光頻完美異常反射器

同濟大學(xué)物理科學(xué)與工程學(xué)院王占山教授和程鑫彬教授聯(lián)合復(fù)旦大學(xué)物理學(xué)系周磊教授,提出了一維多層膜結(jié)合二維超表面的準三維亞波長新結(jié)構(gòu),通過傳輸波和布洛赫波的高效耦合增強非局域能流調(diào)控能力,首次實現(xiàn)了效率優(yōu)于99%的光頻異常反射。研究成果有望推動新型波束掃描系統(tǒng)等儀器裝備的發(fā)展。

7.超長壽命的鈣鈦礦LED

浙江大學(xué)光電科學(xué)與工程學(xué)院長聘教授狄大衛(wèi)和趙保丹研究員團隊利用雙極性分子穩(wěn)定劑抑制離子遷移, 首次實現(xiàn)了滿足實際應(yīng)用標(biāo)準的超長壽命鈣鈦礦LED。在等同于高亮度OLED的光功率下,這些近紅外LED的壽命為32675小時(3.7 年);在更低的輻亮度下,其壽命預(yù)期長達 270 年。這些創(chuàng)紀錄的器件在 5 mA/cm2 的恒定電流下持續(xù)工作 5 個月,輻亮度無明顯衰減。

8.世界首例鈮酸鋰薄膜偏振復(fù)用相干光調(diào)制器

中山大學(xué)電子與信息工程學(xué)院(微電子學(xué)院)蔡鑫倫教授課題組實現(xiàn)了世界首例鈮酸鋰薄膜偏振復(fù)用相干光調(diào)制器,該器件具有CMOS兼容驅(qū)動的半波電壓,110GHz的調(diào)制帶寬,這是目前世界上最高性能的超低電壓和超大帶寬的電光調(diào)制器芯片。利用這一芯片,研究團隊演示了目前單載波相干傳輸?shù)淖罡邇羲俾省?.96Tb/s。該項研究攻克了在下一代超高速、低功耗的相干光傳輸系統(tǒng)不可或缺的電光轉(zhuǎn)換器件。鈮酸鋰薄膜材料及其光子集成技術(shù)研究為實現(xiàn)我國光通信產(chǎn)業(yè)鏈自主可控提供了有力保障。

9.首次發(fā)現(xiàn)光學(xué)微腔中的界面回音壁模式

北京大學(xué)物理學(xué)院肖云峰教授團隊與中國科學(xué)院半導(dǎo)體研究所陳幼玲副研究員合作,首次發(fā)現(xiàn)了光學(xué)微腔中的界面回音壁模式。研究人員在微流集成的微泡腔中,將光學(xué)回音壁模式的電磁場峰值調(diào)控至傳感表面,從物理上提高了傳感器的光學(xué)響應(yīng)強度,成功實現(xiàn)了具有單分子響應(yīng)的微流傳感器件,在高靈敏度微量檢測領(lǐng)域具有廣泛的應(yīng)用前景。

10.在光編碼液晶超結(jié)構(gòu)應(yīng)用取得突破性研究進展

華東理工大學(xué)教授、化學(xué)與分子工程學(xué)院院長朱為宏、物理學(xué)院教授鄭致剛和諾貝爾化學(xué)獎得主、“費林加諾貝爾獎科學(xué)家聯(lián)合研究中心”教授伯納德·L·費林加(Bernard Lucas Feringa)合作,圍繞動態(tài)可控手性液晶光學(xué)微結(jié)構(gòu),從材料設(shè)計、制備和微結(jié)構(gòu)的外場控制入手,解決傳統(tǒng)液晶體系光效率低的問題,賦能液晶微結(jié)構(gòu)的光控寬動態(tài)域,發(fā)展可逆、可擦、漸變、結(jié)構(gòu)疊加與嵌入的多重防偽新技術(shù),為解決我國在高端防偽技術(shù)領(lǐng)域面臨的材料瓶頸提供了可供借鑒的技術(shù)方案。

標(biāo)簽:

推薦

財富更多》

動態(tài)更多》

熱點